Exercice 1 (9.1.1)

Soit la réaction de décomposition

$$Ni(CO)_4(g) \rightarrow Ni(s) + 4CO(g)$$

- a) Comment la vitesse de disparition de Ni(CO)₄ est-elle reliée à celle de formation de CO ?
- b) Si la vitesse d'apparition de CO est de 2,4·10⁻³ mol L⁻¹ min⁻¹, quelle est la vitesse de disparition de Ni(CO)4 au même instant ?

Exercice 2 (9.1.5)

L'étude cinétique de la réaction

$$2 \text{ NO(g)} + 2 \text{ H}_2(g) \rightarrow \text{N}_2(g) + 2 \text{ H}_2\text{O(g)}$$

donne les résultats suivants :

Numéro de l'expérience	$\{ \substack{ [NO] \\ \{ mol^{-1} \ L^{-1} \} }$	[H2] {mol ⁻¹ L ⁻¹ }	Vitesse de formation de N2 {mol L ⁻¹ min ⁻¹ }
1	1,0	1,0	0,15
2	1,0	2,0	0,30
3	1,0	3,0	0,45
4	2,0	3,0	1,80
5	3,0	3,0	4,05

Déterminer les ordres partiels par rapport à chacun des réactifs, l'ordre global et la loi de vitesse de la réaction.

Exercice 3 (9.2.5, modifié)

Soit la réaction de décomposition de N2O5 à 318 K

$$N_2O_5(g) \rightarrow 2 NO_2(g) + 0.5 O_2(g)$$

La constante de vitesse est égale à 5,0·10⁻⁴ s⁻¹. L'énergie d'activation de cette réaction est de 100 kJ/mol

- a) Déterminer l'ordre de réaction.
- b) Quel pourcentage de N2O5 initialement présent est décomposé en 45 minutes à 318 K?
- c) Calculer la constante de vitesse à 332 K.
- d) Quelle est la demi-vie à 332 K.

Exercice 4

On considère une réaction chimique où le réactif A se transforme en un produit B selon une cinétique d'ordre 1. Au début de la réaction, la concentration initiale de A vaut : $[A]_0 = 0.1$ mol/l. Après 1 heure de réaction à 25°C, 40% du réactif A ont été transformés en produit B. Pour accélérer la réaction, on élève ensuite la température du mélange réactionnel à 35°C et on poursuit la réaction pendant 1h. Après ce laps de temps (1 h à 25°C + 1 h à 35°C) on constate que la concentration de A est égale à 0.01 mol/L.

- a) Calculer la constante de vitesse de cette réaction à 25°C et à 35°C.
- b) Calculer la température à laquelle vous devez poursuivre cette réaction pour que qu'il ne reste que 10⁻³ mol/L de A dans le mélange réactionnel après 30 minutes supplémentaires de réaction. Calculer la constante de vitesse de cette réaction à cette température et son énergie d'activation?

Exercice 5

Soit la réaction d'ordre 2 suivante :

$A \rightarrow 2 B$

Pour les conditions initiales suivantes $[A]_0 = 0.5$ mol/L et $[B]_0 = 0$ mol/L, on observe que le temps de demi-vie de A vaut 15 min. Considérer que le volume et la température ne changent pas au cours de la réaction.

- a) Calculer la constante de vitesse et la vitesse de réaction lorsque [B] = 0.5 mol/L
- b) Calculer le temps nécessaire pour que la concentration de B passe de 0.5 mol/L à 0.8 mol/L.

Exercice 6 Soit une réaction où le réactif A se transforme en un produit P à température constante. Pour une concentration initiale de 1 mol/L de A, on obtient un temps de demi-vie de 10 minutes. Lorsqu'on double la concentration initiale, le temps de demi-vie est divisé par Sachant que cette réaction est soit d'ordre 1 soit d'ordre 2, indiquer la (les) affirmation(correcte(s) dans la liste suivante :	deux.
a) l'ordre de la réaction est 1 b) l'ordre de la réaction est 2 c) k = 0.1 L mol ⁻¹ min ⁻¹ d) k = 0.069 min ⁻¹	
Exercice 7 Soit la réaction d'ordre 1 suivante maintenue à une température constante:	
$A \rightarrow B$	
Au début de la réaction, les concentrations de A et de B valent respectivement 0.1 mol/L mol/L. Après 2 minutes, la concentration de A vaut 0.025 mol/L.	L et 0
Indiquer la (les) information(s) correcte(s) dans la liste suivante: a) la constante de vitesse vaut 41.5 s ⁻¹	

b) le temps de demi-vie vaut 1 min

c) les concentrations de B et de A sont égales après 1 minute

d) la vitesse de réaction après deux minutes est le quart de la vitesse initiale